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On expanding e in powers of E, as in eq. 24, we get 
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The first term is exactly what one obtains using the 
Einstein-Smoluchowski hypothesis. The second term 
is independent of the field strength. Although it is 
always present, it is of no interest in light scattering 
experiments. (One may regard this as the scattered 
light associated with black body radiation in the sys­
tem.) The third term on the right-hand side of 
eq. 35 represents the error in the Einstein-Smoluchow­
ski theory. 

After averaging over the ensemble of fluctuations 
in N and T, and subtracting (May-u)2, we obtain 
our final result 

S — 5(macro) + 

V 
(2) 

4TTX 
[FJ + 2(u-E)2] + 0(E') (36) 

This uses the notation of eq. 14. The term independent 
of E2 has been dropped. 

The extra term, containing eav
(2>, is responsible for 

some depolarization. The empirical fact, referred to 
by Fixman, that small optically isotropic molecules 
usually show little or no depolarization is clearly 
related to the well known fact that such molecules 
show very little dielectric saturation. 

Once more we mention that the coefficient eav
(2> 

appearing in the correction term in eq. 36 may be 
slightly in error, as a result of the neglect of saturation 
in calculating the cavity field. Because this correc­
tion is unobservably small in current light scattering 
experiments, a small error in its estimate is of no 
concern here. 
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The theory of X-ray and electron diffraction by atoms is examined from the standpoint of one-electron and 
two-electron operators. Elastic scattering depends on one-electron operators and hence, as is well known, 
may be used to determine the density of electrons about nuclei, a one-electron property. On the other hand, 
it is found that inelastic scattering by atoms possessing more than one electron depends on the distance between 
planetary electrons. Consequently, the mean density of electrons about other electrons, an important two-electron 
property, can also be determined from diffraction experiments. A procedure for deriving the electron-nuclear 
and electron-electron radial distribution functions D(rt) and P(jij) from scattered intensities is presented. It 
is shown how these functions, in turn, may be used to calculate electronic energies in atoms, including correlation 
energy. Properties of D(n) and JP(Ci1-) are illustrated, using helium as an example. An extension of the treat­
ment to molecules and crystals is briefly discussed. Comparisons are made of elastic and inelastic scattering 
factors calculated from Hartree-Fock wave functions and from wave functions explicitly including electron 
correlation. Effects of correlation on inelastic factors are found to be appreciable. The influence of correlation 
on elastic form factors and on Bragg reflection intensities for well-ordered crystals is insignificant, however. 
The relationship between Debye's 1915 picture of the X-ray scattering process and the very different picture 
developed in conventional treatments of X-ray crystallography is pointed out. This comparison helps to eluci­
date the role of electron correlation in X-ray and electron diffraction. 

The purpose of this paper is to bring together a few 
simple ideas, most of which have received attention 
before, individually. In the aggregate, however, they 
cast a somewhat different light on X-ray and electron 
diffraction than the customary approach. Further, 
they illustrate how diffraction affords an experimental 
measure of two-electron properties of atoms and mole­
cules in addition to the well-known measure of charge 
density, a one-electron property.2 Indeed, as we shall 

(1) Contribution No, 1468. Work was performed in the Ames Labora­
tory of the U. S. Atomic Energy Commission 

(2) n-Electron properties are properties depending on expectation values 
of M-electron operators. In general, n-electron operators are of the form 
0 = SflCr,', Tj • • • r») in which each term in the sum depends on the coordinates 
of n electrons and in which the terms themselves cannot be written as the 
sum of m-electron operators with m < n. The operator of prime importance 
in this study is [S exp(«Ti)], a one-electron operator. The square of its 
absolute magnitude, which we also encounter, is a two-electron operator. 

see, diffraction techniques even offer, in principle, a 
method for determining total electronic energies of 
molecules including electron-electron correlation energy. 
The basic theory for such chemically interesting ideas 
was developed many years ago but implications have not 
received the widespread recognition which their sim­
plicity and power warrant. The main reason for this 
is that the enormous success of conventional X-ray 
crystallography, which is based on elastic scattering, 
has quite obscured the significant role of inelastic 
scattering. 

In the following we shall outline those aspects of 
electron correlation and its effects on the scattering of 
radiation by atomic systems which seem of general 
interest to chemists. For sake of brevity and emphasis 
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of the main ideas, the detailed mathematical treatment 
of certain points will be deferred until a later paper. 

I. X-Ray Diffraction by Gas Atoms 
A. Dependence of Intensity on Electronic Wave 

Functions. -We shall consider the nonrelativistic .V 
electron problem in which the energy of incident pho­
tons is large compared with energy differences between 
bound states of the atom.3 4 The theory of the scat­
tering process has been presented in detail by Waller 
and Hartree.5 The resulting expressions for the total 
intensity, / t o t (^ ) , and the intensity, /eiastCv'), elastically 
scattered by independent atoms initially in state k, 
are, consistent with the foregoing assumptions 

T«*M = /ei J V 1
1 S , exp^s - r , ) ! 2 ^ dr (1) 

and 

/eia.t(?) = /ci ' J V [2, expO's-r,)]^ dr,2 (2) 

where <p is the total angle of scattering (twice the Bragg 
angle), /ci is the intensity classically scattered by a point 
electron as derived by Thomson,6 \pt is the electronic 
wave function of the atom, r, describes the position of 
the ith atomic electron, and s is a vector of magnitude 
(4n/\) sin (1Zi(C) and direction n0 — n, where n0 and n 
are unit vectors in the incident and scattered directions, 
respectively. 

It is evident that /eiast is a one-electron property 
which, for spherically symmetric atoms or an average 
over random orientations of aspherical atoms, reduces 
to the familiar expression 

U»M = / d ' F 2 0 ) (3) 

The atomic scattering factor F(s) is given by 

FO) = J * D(r) (sm sr);'sr dr (4) 

where D(r) is the radial distribution, 4-Trr2p(r), of 
planetary electrons, p(r) is the mean electron density 
as a function of the distance r from the nucleus, and 5 
= Sj. The function D(r) may be regarded as the 
sum, 1,D1(T), of individual electron distributions. 

By contrast, /tot is a two-electron property' as can be 
seen by recasting eq. 1 into the form 

/ t ( ) ts; = Tci 2<2jJV[exp0's-r ( J)]i/<* dr (5) 

in which vtj = r, — r(. The N electron wave function 
depends on ',IN spatial coordinates which may be con­
veniently taken as the components of the vectors 
ri, . . . r,, tir r,, . . . r.v rather than components of the 
set Ti, . . . Ti, T1, T1., . . . r.v. The wave function implies 
the electron-electron distribution function (Pt(r(.) for 
electrons i and j , defined by 

<P*(r«) = J V * * dr' (6) 
in which the integration is carried out over all coordi­
nates except those of J-,,. Physically, (Pk(ttj) dr, , 

(3j Tn pract ical analyses relat ivist ic effects are apprec iable . We shall 
regard them as corrections which can be handled in t e rms of existing theory , 
as oullineci in ref. 4. 

:4i A H C o m p t o n and S. K. Allison. " X - r a y s in Theory and Experi­
men t , " I). Van Xost rand Company , Inc. . N'ew York, N. Y., 1935. 

!.'I, I Waller and 1). R Har t r ee . Proc Roy .So,:. (London) , A124, 119 
1929: I m p o i t a n t cont r ibu t ions to the theory were also made by G. 

Wentzel IZ. Physiii, 43, 1, 779 11927;] and by O Klein \ibtd., 41 , 407 (1927) ). 
(ri) J. J. Thomson , "Conduc t ion of Electr ici ty th rough Gases , " 2nd 

Kd.. Cambr idge Universi ty Press, England . 1906, p. 325 
, 7 : Except , of course, for one-electron systems where T1; = 0 and / m t = 

(where dr, , = r,,2 sin (?,, dr^ ddt, d<s,j) may be inter­
preted as the probability that the distance separating 
electrons i and 7 lies between r,, and (r,, + dr,,) while 
the polar angles of the vector r,,, reckoned from any 
convenient frame of axes, lie between 6t, and (8t, + 
ddtt) and between <#,,• and (^4, + dy-,,). It is apparent 
that eq. 5 may be re-expressed, then, as 

/t,ot(tf) = h\ 2(Sj SPkitI1) expOs-r,;) dr,, (7) 

In the event that the atom is spherically symmetric or 
that we consider the average over random orientations, 
eq. 7 simplifies to 

/t0t(<p) = /ci 2 i 2 J / F , ; ( r ) ( s i n ST)-ST dr (S) 

where F,,(v) is the radial distribution function of elec­
tron i with respect to electron j . A mean density, Pi1(T), 
of one electron with respect to another may be defined 
by the relation 

4Trr2p,3.(r) = P11(T) (9) 

It may be remarked that eq. S was first proposed by 
Debye in 1915,s and is exactly analogous to Debye's 
1941 expression3 for the scattering of electrons by 
atomic nuclei in gas molecules. The stimulus prompt­
ing the present investigation, in fact, stemmed from the 
contrast between Debye's equations and the conven­
tional expressions for X-ray scattering. 

I t is convenient to define a total electron-electron 
distribution function 

Pix) = E H'Puii) 
i j * i 

= E E Pt1(V) - Nd(T) (H)) 
I ,7 

which is analogous to the total electron-nuclear distri­
bution function D(r). Equation S can then be ex­
pressed as 

I ̂ W) = / c i J 7 /3O)(sin s r ) / s rd r + N] (11) 

where, as before, N is the number of electrons in the 
system. 

B. Inference of D(r) and P(t) from Scattered In­
tensities.—The electron-nuclear radial distribution 
D(r) and the electron-electron radial distribution 
P(v) are related to elastic and total intensities, respec­
tively, by Fourier sine integrals, as seen in eq. 4 and 11. 
Experimental radial distribution functions may be 
deduced from experimental intensity measurements, 
then, by taking the appropriate sine transforms, or 

D(r) = (2/Tr)J0" srF(s) sin sr ds (12) 

and 

P(T) = (2/V)J0" sr[(/tot/7ci) - N] sin sr ds (13) 

The lack of experimental observations to s = oc may 
be handled by a procedure of the sort suggested by 
Hauptman and Karle.10'11 An experimental differen-

(8! P . Debye , Ann. Physik (Leipzig), 46, 809 (1915)', Physik. Z . 24, 
161 (1923); J. MaIh Phys , 4, 133 (1925, 

(9) P D e b y e , . ' Chem. Phys , 9, 55 , 1911) 
(10) H, H a u p t m a n and J. Kar le , P i i j ! . Rn. , 77 191 (IMi,' 
(111 L. S. Bartell and L. O. Brockway, ibid., 90, 833 (1953: 
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tiation between elastic and total intensity is rarely 
carried out but it can be done, in principle, and has 
actually been accomplished in practice by Compton, 
at least for the larger scattering angles.12 

Several experimental X-ray determinations of D(r) 
have been reported in which electron-nuclear distribu­
tions were deduced from total intensities. In these de­
terminations corrections for inelastic scattering were 
made using calculations from approximate wave func­
tions. The natural information to be derived from 
total intensities, namely the electron-electron distribution 
function Pix), appears not to have been calculated. 
Inelastic corrections become smaller relative to total 
intensities as the atomic number increases. For 
light atoms, however, the inelastic corrections in the 
most important angular range are comparable to the 
elastic intensities. Consequently, the use of approxi­
mate wave functions in the deduction of D(r) not only 
begs the question, logically, but also may lead to serious 
error. Moreover, in the light of modern developments, 
since D(r) is a one-electron property which is relatively 
simple to derive theoretically and since P(x) is a two-
electron property which is difficult to calculate, it 
would seem to be not only more rigorous but also more 
interesting to seek an experimental measure of P(x) 
rather than of D(r) from / t o t . 

C. Inference of Electronic Energies from Scattered 
Intensities.—The Hamiltonian operator for an atom 
may be taken, for the present purposes, as 

H = lTt + ZVnt + 2 2 ' V„ (14) 

where the Tt and Vn, represent kinetic energy and 
electron-nuclear potential energy operators and where 
the V^ operators represent the electron-electron re­
pulsions. The electronic energy for an atom in a 
given state is the expectation value of H. I t is well 
known that the two-electron operators Vtj present the 
principal obstacle to the deduction of precise solutions 
of the Schrodinger equation, for their mean magnitude 
depends on the difficult problem of electron correlation. 
The distribution functions discussed in a preceding 
section, however, characterize the electronic behavior 
sufficiently to establish the electronic energy completely. 

The average potential energies are readily seen to be 
given by 

HnVni = -e*fQ" ZDt(r)/r dr 

= - e 2 / 0 ° D(r)/r dr (15) 

and 

E E'Po = 4;iE'^(r)Adr 
i 3*i ^" i j i 

= e2JQ° P (V)/x dr (16) 

and it is to be noted especially that the electron correla­
tion energy is fully represented. The total energy can 
be derived from the mean potential energy by the virial 
theorem, according to which 

E = \ \XVni + Z2 'P W } (17) 

for an atom. I t is unlikely that determinations of E 
(12) A. H. C o m p t o n , Phy;. Rev., 22, 409 (1923). 

based on experimental diffraction distribution functions 
will be competitive in accuracy with the best alternative 
experimental determinations. The diffraction method, 
however, has the advantage of separating electron-
electron and electron-nuclear contributions, and it 
appears feasible to determine electron-electron re­
pulsion energies with its aid which are better than 
calculated Hartree-Fock repulsion energies in some 
cases. Support for this conjecture is given in the fol­
lowing sections. 

D. Some Properties of D(r) and P(x).—Although 
the behavior of D(r) is familiar to all chemists, the 
distribution function P{x) seems not to have been 
investigated until recently.13 The simplest atom which 
serves to illustrate the two-electron aspects of P(x) is, 
of course, helium, an atom for which quite accurate 
wave functions are available. It is of interest to com­
pare the behavior of D(r) and P(x) calculated according 
to the correlationless Hartree-Fock wave function1,1 and 
according to the wave function of Roothaan and Weiss15 

which accounts for 92% of the correlation energy. 
Such a comparison is made in Fig. 1. In Fig. 2 are 
shown corresponding plots of the electron-nuclear and 
electron-electron densities p{r) and pi2(r). 

As discussed by several authors16 the Hartree-Fock 
results are considerably more satisfactory for the one-
electron properties D{r) and p(r) than for the two-elec­
tron properties P(x) and pw(r). The superior electron-
electron avoidance allowed by the better wave function 
is clearly evident in the plots, and the "coulomb hole" 
near r = () is graphically portrayed in the best curve 
for pi2(r). The difference between the Hartree-Fock 
and more exact P(x) is substantial and large enough to 
lend confidence that a precise X-ray study could dis­
criminate between the two. 

The functions illustrated in Fig. 1 and 2 were deter­
mined from the wave functions by numerical integra­
tion and were checked by calculating energies according 
to eq. 15-17. Published energies were reproduced 
almost exactly. Further observations on the properties 
P(x) have been recently reported by Coulson and 
Neilson,13 who outline an analytical method for de­
termining P(x) from certain analytical forms of wave 
functions. 

E. Statistical, Hartree-Fock, and "Exact" Inelastic 
Scattering Factors.—The inelastic scattering factor 
S(s) for a spherical atom is defined by the relation 

Itot(<p) = hdP'(s) + S(S)] (18) 

A comparison of eq. 18 with eq. 4 and 11 indicates that 

S(s) = N + J 0 " P(r)(sin s r ) / s rd r -

[J0" Z)(r) (sin sr)/srdr]* (19) 

Plots of (Itot/Ic\), F2(s), and S(s) for helium are shown 
in Fig. 3, as calculated for the Hartree-Fock and for the 
more exact wave function of Roothaan and Weiss. 
I t can be seen that correlation effects on the inelastic 

(13) C. A. Coulson and A. H Neilson, Prnc. Phys. Soc {London), 78 , 
831 (1961). 

(14) C. C. J Roo thaan , L. M. Sachs, and A. W Weiss Rn' Mad Phy 
32, 186 (1960). 

(15) C. C. J. R o o t ! Mn and A. W, Weiss, ibid , 32, 194 il!)60). 
(16) L, Brillouin, "Actual i tes scientifiques ct industrielles- " Xo l."9 

H e r m a n n et Cie., Par is , 1934; J Goodisman and W. Klemperer , .7, ( h,m 
Phys., 38, 721 (196.3); M. Karplus and H. J, Kolker, ibid. 38, 1263 i 19(i.'i,, 
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D (r) ROOTHWN-WESS 

Fig. 1.—Calculated electron-nuclear and electron-electron 
radial distribution functions D(r) and P(V) for helium. The 
enhanced electron avoidance implicit in the Roothaan-Weiss 
wave function in comparison with the Hartree-Fock wave func­
tion is clearly evident. The D(r) functions calculated from the 
two wave functions are indistinguishable from each other in the 
scale of the above plot. 

Fig. 2.—Calculated electron-nuclear and mean electron-
electron densities p(r) and pia(t) for helium. The wave func­
tions used were Hartree-Fock [<p(ri)<p{ri)}, Hylleraas [(I + Ct12) 
exp( — ar, — art)}, and Roothaan-Weiss [«?0i)¥>( Ox(^a)] func­
tions with correlation energy errors of 100%, 30.0%, and 7.9%, 
of the total correlation energy, respectively. 

intensity are significant. Also plotted are the 1931 
experimental values of Wollan,17 corrected for rela-
tivistic effects. These results are not sufficiently accu­
rate to establish Pix) with any precision but they are 
not inconsistent with the present calculations. 

Inelastic scattering factors as good as Hartree-Fock 
factors have become generally available only recently.18 

For the most part Heisenberg-Bewilogua scattering 
factors deduced from the Thomas-Fermi statistical 
model have been used in the past.19 The statistical 
model may be expected to fail more seriously as the 
number of electrons decreases, and accurate results 
cannot be expected for helium. For purposes of com­
parison, numerical values of S(s) calculated for helium 
are listed in Table I. Computations were based on the 
statistical model and on Hartree-Fock,1 4 Hylleraas,20 

and Roothaan-Weiss15 wave functions. 

(17) E. O. Wollan, Phys. Rev., 37, 862 (1931). 
(18) A, J, F reeman . Acta Cryst., 12, 274 (1959); IS , 190 (1960); A. 

J Freeman and R. E. Watson, U. S Dept . of Commerce , Office of Tech­
nical Services, AD 263,096 (1961). 

(19) L. Bewilogua, Physik Z., 32, 740 (1931). 
!20) E. A. Hyl leraas . ?.. Physik, 54, 347 (1929) 

I TOTAL / I CLASSICIAL 

WOLLAN (EXPT.) 

HARTREE - FOCK 

ROOTHAAN-WEISS 

Fig. 3.—Reduced total, elastic [F2], and inelastic [S] intensities 
calculated for X-ray scattering by helium. Experimental points 
due to Wollan are plotted as O's. The elastic intensities calcu­
lated from the two wave functions are indistinguishable from 
each other in the scale of the above plot. 

TABLE I 

INELASTIC SCATTERING FACTORS, S(S), 

sin tp/2 

\ 
0.025 

.050 
.075 
.100 
.125 
150 
175 
200 
250 
300 
400 
500 

.600 

.700 

.800 
« Ref. 

Heisenberg 
Bewilogua 
s ta t i s t ica l" 

0.49 
.79 

15 
27 
38 
46 
52 
63 
70 

H a r t r e e - F o c k 6 

<p(ri)v{ri) 

0.02164 
08474 
.1841 
.3121 
.4596 
6176 

CALCULATED FOR HELIUM 

Roothaan— 
Hylleraas 0 Weiss'* 
(1 + cru) • v(n)f(n) 

exp( — art — art) x i:) 

0.01812 0 02052 
.07123 .08032 
.1557 1744 
.2659 2954 
3953 4348 
5367 .5840 
6835 .7355 

.8297 .8830 
1.1029 1.1485 
1.3336 1.3669 
1.6526 1.6621 
1.8241 1.8219 
1.9104 1.9052 
1.9533 1.9485 
1.9748 1.9712 

s.c.f. orbital functions, 
0% of correlation energy, 
ref. 15. 

.9336 
1.2138 
1.4382 

80 1.7275 
86 1.8704 
90 1.9376 
92 1.9692 

1.9842 
19. 6 Four term analytical 

0% of correlation energy, ref. 14. " 70 
ref. 20. d 92.1% of correlation energy. 

F. Physical Description of X-Ray Scattering Proc­
ess.—A consideration of physical aspects of the 
scattering process gives some insight into the role of 
electron correlation in diffraction. Reference books 
on crystallography customarily describe X-ray diffrac­
tion in terms of the following picture : 

(la) An X-ray wave encounters the time-average 
electron cloud charge of the scatterer and sets it into 
sympathetic motion. 

(2a) Each volume element in the electron cloud radi­
ates a wavelet, the amplitude of which is proportional 
to the charge density in the volume element. 

(3a) At the point of observation the amplitudes ar­
riving from each wavelet are summed, giving the re­
sultant scattered amplitude at that point. 

(4a) The intensity is obtained by squaring the abso­
lute magnitude of the scattered amplitude. 

In summary, scattered amplitudes are averaged over 
the quantum density of the electrons and the result is 
squared to get intensities. No manifestation of electron 
correlation is evident. 

By contrast, the original treatment of Debye8 and 
the treatment of Waller and Hartree, according to eq. 
1, imply tha t : 
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(lb) The X-ray wave encounters an instantaneous 
distribution of point electrons. 

(2b) Scattered amplitudes from the individual point 
electrons are summed at the point of observation to 
give an instantaneous total scattered amplitude. 

(3b) The instantaneous amplitude is squared to ob­
tain the intensity due to the instantaneous array of 
point electrons. 

(4b) Instantaneous intensities are averaged over the 
quantum mechanical distribution of geometrical con­
figurations to get the mean total intensity. 

In summary, scattered intensities are averaged in 
viewpoint b rather than amplitudes as in a. Electron 
correlation is manifested in the weighting of instan­
taneous configurations. 

Viewpoint b might be interpreted, physically, in 
terms of the high frequency of X-rays in comparison 
with natural atomic and molecular frequencies. That 
is, the time for X-ray scattering is envisioned to be 
short compared with the time for planetary electrons 
to move appreciably. This classically expressed inter­
pretation is closely analogous to the popular interpre­
tation of the Franck-Condon principle. I t is a useful 
interpretation but suffers the same deficiency as the 
Franck-Condon interpretation. If the spectrum of 
intensity from a system of independent molecules were 
examined under high resolution, sharp fine structure 
would be found, as discussed below. In view of the 
uncertainty relation b.vi\t ~ 1, the existence of fine 
structure with an energy breadth narrower than spacings 
between molecular excitation levels would indicate 
that the duration of the scattering process [or Franck-
Condon excitation] is long compared with natural 
molecular periods. 

There is really no contradiction between viewpoints 
a and b, for a corresponds to the elastic intensity and 
b to the total intensity. This is illustrated in the follow­
ing. The density p;(r) of electron i is given by the 
integration of ^p*\p over all coordinates except those of 
electron i. Hence, eq. 2 reduces at once to 

/oust = h\\SH p(r) exp(ts-r) d r | 2 

i i 

= Ic\\f P(T) exp(«ST) dr | 2 (20) 

This equation expresses viewpoint a. 
On the other hand, Waller and Hartree have shown 

that the inelastic intensity scattered in the excitation 
of atoms from state k to state / is 

/*, = / . iL /V**E exptfs-r,)]*, d r | 2 (21) 
i 

The total intensity scattered by a system of atoms 
initially in the Mh state is then 

ItotM = Eht (22) 
I 

Since it is presumed tha t the set of eigenfunctions 
{ft} is complete, eq. 22 simplifies by application of the 
closure theorem to eq. 1. This equation expresses 
viewpoint b. 

The momentum exchange between photons and 
atoms incurred in elastic scattering involves the entire 
mass of the atoms. The momentum exchange in the 
inelastic (Compton) scattering involves the planetary 
electrons, which are thereby excited to higher states. 
The momentum exchange between photons and elec­
trons, as it were, is associated with positional measure­

ment of the electrons. I t is natural, therefore, that 
correlation shows up in inelastic rather than elastic 
scattering. Inasmuch as atoms do not have infinite 
mass, "elastic" scattering is also, of course, to some 
degree inelastic. 

An analogous situation in neutron diffraction has 
been exploited for some time. Inelastic neutron 
scattering experiments have been used extensively in 
the study of correlated motions of nuclei in crystals.21 

Neutron scattering is particularly effective for this 
because neutrons have masses comparable to nuclear 
masses and readily exchange momentum with nuclei. 
By the same token, it is apparent that inelastic electron 
scattering would closely parallel inelastic X-ray 
scattering and serve best as a tool for studying motions 
of planetary electrons. 

II. X-Ray Diffraction by Crystals 

For light atoms /eiast and / t o t are very different and 
the inelastic contribution is sensitive to electron cor­
relation behavior. I t is not immediately obvious, 
then, that X-ray diffraction by crystals with light atoms 
is adequately described by the conventional elastic 
scattering picture alone. I t is usually argued that 
inelastic scattering is incoherent and, hence, unim­
portant in scattering by crystal lattices. Nevertheless, 
eq. 21 indicates definite phase relationships for wavelets 
scattered from volume elements over the entire crystal 
by each inelastic event. Considerations of this sort 
originally made it appear worth investigating whether 
electron correlation might be responsible for anomalous 
results encountered in crystallography such as the un­
reasonably short lengths often reported for bonds to 
hydrogen atoms.22 

The basic relations 1 and 2 of section I-A apply to 
crystals as well as to individual atoms if the appro­
priate many-electron wave function for the entire 
crystal is used. The elastic intensity is sensitive only 
to electron density, as we have seen. If a simple 
atomic orbital product wave function is used it may be 
shown that the only difference between / t o t and /eiast 
is a featureless (incoherent) sum of inelastic atomic 
terms. Any departure between a featureless inelastic 
intensity and an intensity calculated from a precise 
wave function must result from the influence of electron 
correlation on the pair distribution function (P(rl;) of 
eq. 7. 

I t is reasonable to assume that correlation effects are 
significant only for nearest molecular neighbors. 
Intramolecular dispersion interactions may be high 
but intermolecular dispersion forces scarcely extend 
beyond nearest neighbors. It follows that the number 
of terms in eq. 7 which are influenced by correlation is 
proportional to the number of molecules in the crystal. 
The total number of terms, however, is proportional to 
the square of the number of molecules. Since all terms 
in the summation of eq. 7 are comparable in magnitude 
at reflection maxima it would seem that effects of elec-

(21) B. N. Brockhouse and A. T. S tewar t , Rev. Mod. Phys., 30, 236, 250 
(1958); "Sympos ium on Inelast ic Sca t te r ing of Neu t rons by Solids and 
L iqu ids , " In te rna t iona l Atomic Energy Agency, Vienna, 1961. 

(22) J. P. Whea t ley , Acta Cryst., 6, 369 (1953); J. A, Ibers , ibid., 14, 
853 (1961); W. C. Hami l ton , Ann. Rev. Phys. C.hem., 13, 19 (1962), I b e r ' s 
model to explain the fact t h a t C - H dis tances in electron diffraction s tudies 
are longer t h a n in spectroscopic s tudies is a lmost cer ta inly wrong, however, 
because electron diffraction and spectroscopic values agree when spectro­
scopic values are corrected to mean values. See L. S. Bartel l , K Kuch i t su , 
and R. J. de Xeui , J. Chem, Phys., 35, 1211 (1961). 
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Fig. -! —Total and elastic intensities calculated for electron 
scattering by helium. Intensities are multiplied by s2-5, simulat­
ing the action of a rotating sector, to portray most clearly the 
distinctions between the different curves. 

tron correlation are insignificant in crystals with large 
numbers of well-ordered atoms. Therefore (and to no 
crystallographer's surprise), the conventional equations 
of crystallography are accurate and the source of diffi­
culties with hydrogen must lie elsewhere. 

III. Electron Diffraction by Gas Atoms and 
Molecules 

The assumptions which must be imposed before 
electron diffraction is amenable to simple treatment are 
somewhat more severe than those for X-ray diffraction, 
as might be expected from the stronger interaction 
of electrons with matter. As in the case of X-rays, the 
model considered here is nonrelativistic with the inci­
dent energy large compared with atomic excitation 
energies. If polarization and exchange are ignored 
and the first Born approximation is applied, expressions 
for the intensity exactly paralleling eq. 1 and 2 for X-
rays result.23 The wave functions involved, however, 
include nuclear coordinates as well as electronic co­
ordinates. An interesting consequence is that elastic 
and total intensities can be reexpressed in terms of 
viewpoints a and b of section T F . The only adjust­
ments which must be made are that nuclei as well as 
planetary electrons scatter wavelets, but with ampli­
tudes — Z times as great, and that IQ\ for electrons is 
given by the Rutherford scattering law24 rather than 
the Thomson equation. This formulation is useful 
because of its simplicity and power. I t is appreciably 
more precise than the commonly used Debye-Ehrenfest 
independent atom approximation and has the added 
virtue of being exceedingly easy to remember. 

For a gas molecule the average over random orienta­
tions is exactly analogous to eq. S, or 

/«,(<») = /ci E E Z11ZjP11, (r)(sin sr)/sr dr (23) 

where the sum is over all particles, nuclei and electrons 
alike, with Z„ standing for atomic number if y. is a nu­
cleus and standing for — 1 if p. is an electron, For a 
gas atom, eq. 23 reduces to nuclear-nuclear, nuclear-
electron, and electron-electron terms, or 

;2:-l, For the key steps, see T. Iijim.-], R. A. Bonham, and T. Ando, J. 
/'/i.vt. Clu-m., 67, i472 (1963). 

'!'(•' Iv Rutherford, Phil. Mag.. 2 1 , 669 (1911) 

IlotM = / d { Z 2 - 2Z^fDAr)(Sm sr)/sr dr + 
i 

E E / ^ ; ( t ' ) ( s i n . n - . .vrdri (24) 
i j 

in which i and j denote electrons. The middle term is 
seen at once from eq. 4 to be —2ZF{s) and the last 
term is identical with the X-ray double summation in eq. 
8 which reduces to F2(s) + S(s) according to eq. IS, 
so that 

/tot(^) = /ei{Z2 - 2ZF(S) + [F2U) + S(s)}\ 

= Ij1[Z - F(s)]2 + S(s)} (2,5) 

Equation 25 is the conventional electron diffraction 
expression for atoms. The corresponding elastic inten­
sity is 

,^(va) = Fx[Z - F(s)Y (2G) 

Elastic and total intensities for helium calculated 
using eq. 25 and 26 are shown in Fig. 4 as they would be 
recorded through an 52-5 rotating sector. Electron 
correlation effects are found to be relatively greater 
in electron diffraction than in X-ray diffraction since 
S/(Z — F)2 is greater than S/F2 in the critical range of 
scattering angle. Partly offsetting this advantage of 
electron diffraction over X-ray diffraction as an experi­
mental measure of correlation effects is the greater 
uncertainty of electron diffraction theory as discussed 
above.25 

It is apparent that / t o t for electrons cannot be 
analyzed to yield either D(r) or P(v) directly. This is 
in contrast to the X-ray case where P(X) is derivable from 
/tot alone. If both 7tot and /eiast are available from 
electron diffraction, however, both D(r) and P(x) may 
be derived. An experimental electron diffraction 
determination of D(r) for argon by Bartell and Brock-
way,11 which made use of only / t o t , is subject to the 
same criticism as the X-ray determinations discussed 
in section I-B above. 

Further applications of this general approach in 
electron diffraction, such as the influence of covalent 
binding effects on scattered intensities, have been 
discussed recently by Bonham, et a/.23,26 Additional 
aspects of electron correlation in various states of helium 
and other light atoms will be published elsewhere 
along with the details of treatment omitted here. 
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(25) I t is in teres t ing to note , however , t h a t t he expression for the inelastic 
sca t te r ing of e lectrons is p robably no t sensit ive to errors in t he Born approxi­
mat ion . We are indebted to Professor Debye for point ing this out . The 
Born approximat ion gives the correct expression for the in tens i ty sca t te red 
by an isolated charged part icle even though it gives incorrect phases of the 
scat tered waves. I t also gives essential ly correct interference t e rms for the 
sca t te r ing by a sys tem of part icles of identical charge. I t gives incorrect in­
terference t e rms for a pair of part icles of significantly different charge. I t 
would seem, then , t ha t the e lec t ron-e lec t ron t e rms of eq. 2'S, which include 
the inelastic scat ter ing, are reasonably accura te The electron nuclear 
t e rms are less reliable but , since they con t r ibu te only to the elastic sca t t e r ing , 
their unce r t a in ty is less serious in correlat ion s tudies If Born errors are not 
corrected it is not possible to derive accura te o>ie-rlerlro;i densi t ies directly 
from electron sca t te r ing da ta . On the other hand , it may he possible to de­
rive reasonably accura te Iwo-eUdron d is t r ibut ion functions from uncorrected 
inelastic sca t te r ing da t a with the aid of theoret ical one-electron atom form 
factors . 

(26) R, A. Bonham and T. I i j ima, J. Phys. Chem.. 67, 2266 (IHfWJ. 


