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this is equal to
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On expanding e in powers of E, asin eq. 24, we get
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The first term is exactly what one obtains using the
Einstein-Smoluchowski hypothesis. The second term
is independent of the field strength. Although it is
always present, it is of no interest in light scattering
experiments. (One may regard this as the scattered
light associated with black body radiation in the sys-
tem.) The third term on the right-hand side of
eq. 35 represents the error in the Einstein-Smoluchow-
ski theory.
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After averaging over the ensemble of fluctuations
in N and 7, and subtracting (M,, u)?, we obtain
our final result

S = S(macro) +
4—V—x e ®[E? + 2wE)?] + 0(EY)  (36)

m
This uses the notation of eq. 14.
of E? has been dropped.

The extra term, containing €,.(¥, is responsible for
some depolarization. The empirical fact, referred to
by Fixman, that small optically isotropic molecules
usually show little or no depolarization is clearly
related to the well known fact that such molecules
show very little dielectric saturation.

Once more we mention that the coefficient e,
appearing in the correction term in eq. 36 may be
slightly in error, as a result of the neglect of saturation
in calculating the cavity field. Because this correc-
tion is unobservably small in current light scattering
experiments, a small error in its estimate is of no
concern here.
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The theory of X-ray and electron diffraction by atoms is examined from the standpoint of one-electron and
two-electron operators. Elastic scattering depends on one-electron operators and hence, as is well known,
may be used to determine the density of electrons about nuclet, a one-electron property. On the other hand,
it is found that inelastic scattering by atoms possessing more than one electron depends on the distance between
planetary electrons., Consequently, the mean density of electrons about other electrons, an important two-electron
property, can also be deterniined from diffraction experiments. A procedure for deriving the electron-nuclear
and electron-electron radial distribution functions D{(r;) and P(r;;) from scattered intensities is presented. It
is shown how these functions, in turn, may be used to calculate electronic energies in atoms, including correlation
energy. Properties of D(r;) and P(ri;) are illustrated, using helium as an example. An extension of the treat-
ment to molecules and crystals is briefly discussed. Comparisons are made of elastic and inelastic scattering
factors calculated from Hartree-Fock wave functions and from wave functions explicitly including electron
correlation, Effects of correlation on inelastic factors are found to be appreciable. The influence of correlation
on elastic form factors and on Bragg reflection intensities for well-ordered crystals is insignificant, however.
The relationship between Debye's 1915 picture of the X-ray scattering process and the very different picture

developed in conventional treatments of X-ray crystallography is pointed out.

This comparison helps to eluci-

date the role of electron correlation in X-ray and electron diffraction.

The purpose of this paper is to bring together a few
simple ideas. most of which have received attention
before, individually. In the aggregate, however, they
cast a somewhat different light on X.ray and electron
diffraction than the customary approach. Further,
they illustrate how diffraction affords an experimental
measure of two-electron properties of atoms and mole-
cules in addition to the well-known measure of charge
density, a one-electron property.? Indeed, as we shall

(1) Contribution No. 1468. Work was performed in the Ames Labora-
tory of the U. S. Atomic Energy Cominission

(2) n-Electron properties are properties depending on expectation values
of n-electron operators. In general, n-electron operators are of the form
Q = Zq(ri,r; ... rg) in which each term in the sum depends on the coordinates
of n electrons and in which the terms themselves cannot be written as the
sum of m-electron operators with m < n. The operator of prime importance
in this study is [Z exp(ss'1y)), a ome-electron operator. The square of its
absolute magnitude, which we also encounter, is a two-electron operator.

see, diffraction techniques even offer, in principle, a
method for determining total electronic energies of
molecules including electron-electron correlation energy.
The basic theory for such chemically interesting ideas
was developed many years ago but implications have not
received the widespread recognition which their sim-
plicity and power warrant. The main reason for this
is that the enormous success of conventional X-ray
crystallography, which is based on elastic scattering,
has quite obscured the significant role of inelastic
scattering.

In the following we shall outline those aspects of
electron correlation and its effects on the scattering of
radiation by atomic systems which seem of general
interest to chemists. For sake of brevity and emphasis
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of the main ideas, the detailed mathematical treatment
of certain points will be deferred until a later paper.

1. X-Ray Diffraction by Gas Atoms
A. Dependence of Intensity on Electronic Wave
Functions. -We shall consider the nonrelativistic N
electron problemn in which the energy of incident pho-
tons is large compared with energy differences between
bound states of the atom.?* The theory of the scat-
tering process has been presented in detail by Waller
and Hartree.” The resulting expressions for the total
intensity, /y,.(¢). and the intensity, Jeas:(¢), elastically
scattered by independent atoms initially in state £,

are, consistent with the foregoing assumptions

Loi(e) = 1o f‘pk*“zi eXP(’is'r1)12¢k dr (1)

and
L) = L 1 fY*[Z, explis ) gy dr? (2)

where ¢ is the total angle of scattering (twice the Bragg
angle), [ is the intensity classically scattered by a point
electron as derived by Thonison,® ¢, is the electronic
wave function of the atom, r; describes the position of
the 7th atomic electron, and s is a vector of magnitude
(47/X) sin ('/y¢) and direction ny, — n, where ny and n
are unit vectors in the incident and scattered directions,
respectively.

It is evident that [... 1S a one-electron property
which, for spherically symmetric atoms or an average
over random orientations of aspherical atoms, reduces
to the faniliar expression

Lansileo) = Lo F(s) (3)

The atomic scattering factor F(s) is given by
F(s) = fom D(r)(sin sr)/sr dr (4)

where D(7) is the radial distribution, 4xr%p(r). of
planetary electrons, p(r) is the mean electron density
as a function of the distance » from the nucleus, and s
= 's|. The function D(r) may be regarded as the
sum, XD, (7). of individual electron distributions,

By contrast, [ is & fwo-electron property’ as can be
seenl by recasting eq. | into the form

Lo = Lo 2.3, fy, [explsr) e dr - (3)

in which v, =1, — r,, The NV electron wave function
depends on 3.V spatial coordinates which may be con-
veniently taken as the components of the vectors
r....r. ¥, r, ... ry rather than components of the
setr. .. .r, 1,1, ...ry. The wave function implies
the electron-electroun distribution function ®(r;,) for
electrons 7 and ;. defined by

@ulty) = f¢k*¢k dr’ (6)

in which the integration is carried out over all coordi-
nates except those of r,. Physically, ®.(r,) dry

i3 In practical analyses relativistic effects are appreciable. We shall
regarsl them as corrections which can be handled in terms of existing theory,
as outlinted in ref. 4.

i+ A H Compton and 8 K. Allisun, "X-rays {n Theory and Experi-
ment,” 1), Van Nostrand Company, Ine.. New York, N. Y., 1933,

iy 1. Waller and 1), R Hartree, Proc. Roy. Sor. (london), Al24, 119
P12 Important contributions to the theory were also made by G.
Wentzel (7, Phviie, 43, 1,770 11827 and by O. Klein libid., 41, 407 11927) 1.

ity J. J. Thomson., “Conduetion of Electricity tlirough Gases,” 2nd
England, 1006, p. 325
electron systems wherery; = 0 and [, =

1l Camlircdge Unsversity Press
Ty Lixeept, of conrse, Tar n
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(where d7,, = v,? sin 8, dry, d8;, tdey,) may be inter-
preted as the probability that the distance sepurating
electrons ¢ and j lies between r,, and (ry, + dr,} while
the polar angles of the vector r;,, reckonced frou sny
convenient frame of axes, lie between §,, aud (8;, -+
df;,) and between ¢; and (p;; + dey,). It is apparent
that eq. 5 may be re-expressed. themn, as

[t,ot<¢) = [cl Zizj J‘Pk<r1j) exP('ljS‘l‘u\) (17'1'7 (7)

In the event that the atom is spherically symmetric or
that we consider the average over random orientatious,
eq. 7 simplifies to

Lol(@) = Ta 2Z; SP(1) (sin sv)/st dr (S)

where P, (1) is the radial distribution function of clec-
tron ¢ with respect to electron j. A mean density, p, (1),
of one electron with respect to another may be defined
by the relation

Arip,(v) = Py(v) (9)

It may be remarked that eq. 8 was first proposed by
Debye 1n 1915,% and is exactly analogous to Debye's
1941 expression® for the scattering of electrons by
atomic nuclei in gas molecules. The stimulus prompt-
ing the present investigation, in fact, stemmed from the
contrast between Debye's equations and the conven-
tional expressions for X-ray scattering.

It is convenient to define a total clectron—elcctron
distribution function

Z Z’ Piy(x)

i FFEL

> Z Piy(r) — Né(v) (10)

i

P(r)

i

i

which is analogous to the total electron-nuclear distri-
bution function D(r). Equation & can then be ex-
pressed as

Lioi(o) = lﬂ{fo“’ Plr)(sin st)/stdr + N} (11)

where, as before, V is the number of electrons in the
system.

B. Inference of D(r) and P(r) from Scattered In-
tensities,—The electron—nuclear radial distribution
D(r) and the electron—electron radial distribution
P(v) are related to elastic and total intensities, respec-
tively, by Fourier sine integrals, as seen in eq. 4 and 11,
Experimental radial distribution functions may be
deduced from experimental intensity measurements.
then, by taking the appropriate sine transforms, or

D) = (2‘,’7r)f0m srF(s) sin s7 ds (12)
and
P() = @/m) [\ sello'To) = Nsinstds (13)

The lack of experimental observations to s = o may
be handled by a procedure of the sort suggested by
Hauptman and Karle.!%!! An experimental differen-
{8) P. Debye, Ann. Physik 1l.eipzig), 46, 8049 11315);
161 (1923); J. \ath Phys , 4, 133 11925;
i9) P Debye, J. Chem. Phys. 9, 33,1011}
10} H. Haniptman and }. Karle, Phys. Rei, 77, 191 [19400
{113 1§ Bartell and L. O. Brockway, ibid., 90, 883 (1043

Physik. 7 | 24,
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tiation between elastic and total intensity is rarely
carried out but it can be done, in principle, and has
actually been accomplished in practice by Compton,
at least for the larger scattering angles.!?

Several experimental X-ray determinations of D(r)
have been reported in which electron—-nuclear distribu-
tions were deduced from fotal intensities. In these de-
terminations corrections for inelastic scattering were
made using calculations from approximate wave func-
tions. The natural information to be derived from
total intensities, namely the electron—electron distribution
function P(r), appears not to have been calculated.
Inelastic corrections become smaller relative to total
intensities as the atomic number increases. For
light atoms, however, the inelastic corrections in the
most important angular range are comparable to the
elastic intensities. Consequently, the use of approxi-
mate wave functions in the deduction of D(r) not only
begs the question, logically, but also may lead to serious
error. Moreover, in the light of modern developments,
since D(r) is a one-electron property which is relatively
simple to derive theoretically and since P(r) is a two-
electron property which is difficult to calculate, it
would seem to be not only more rigorous but also more
interesting to seek an experimental measure of P(r)
rather than of D(7) from [i.

C. Inference of Electronic Energies from Scattered
Intensities,—The Hamiltonian operator for an atom
may be taken, for the present purposes, as

H=Z2T,+ 32V, + 22V, (14)

where the 7, and V,, represent kinetic energy and
electron-nuclear potential energy operators and where
the V|, operators represent the electron-electron re-
pulsions. The electronic energy for an atom in a
given state is the expectation value of H. It is well
known that the two-electron operators V,; present the
principal obstacle to the deduction of precise solutions
of the Schrodinger equation, for their mean magnitude
depends on the difficult problem of electron correlation.
The distribution functions discussed in a preceding
section, however, characterize the electronic behavior
sufficiently to establish the electronic energy completely.

The average potential energies are readily seen to be
given by

TaVu=—e [ S0,/ ar

= —e2f0°° D(r)/r dr (15)
and

XV = e2f0°° Y TPy /rdr
i JFE T i

= ef” P@)/rar (16)

and it is to be noted especially that the electron correla-
tion energy is fully represented. The total energy can
be derived from the mean potential energy by the virial
theorem, according to which

1, }
E =3 {27 + 22V, (an

for an atom. It is unlikely that determinations of E
(12) A. H. Compton, Phys. Rev., 23, 409 (1923).
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based on experimental diffraction distribution functions
will be competitive in accuracy with the best alternative
experimental determinations. The diffraction method,
however, has the advantage of separating electron-
electron and electron-nuclear contributions, and it
appears feasible to determine electron—electron re-
pulsion energies with its aid which are better than
calculated Hartree-Fock repulsion energies in somie
cases. Support for this conjecture is given in the fol-
lowing sections.

D, Some Properties of D(r) and P(r).-—Although
the behavior of D(r) is familiar to all chemists, the
distribution function P(r) seems not to have been
investigated until recently.!®* The simplest atom which
serves to illustrate the two-electron aspects of (1) is,
of course, helium, an atom for which quite accurate
wave functions are available. It is of interest to com-
pare the behavior of D(r) and P(r) calculated according
to the correlationless Hartree-Fock wave function!'t and
according to the wave function of Roothaan and Weiss!?
which accounts for 929 of the correlation energy.
Such a comparison is made in Fig. 1. In Fig. 2 are
shown corresponding plots of the electron-nuclear and
electron—-electron densities p(r) and pa(t).

As discussed by several authors'® the Hartree-Fock
results are considerably more satisfactory for the one-
electron properties D(r) and p(7) than for the two-elec-
tron properties P(tr) and p,;(t). The superior electron-
electron avoidance allowed by the better wave function
1s clearly evident in the plots, and the "'coulomb hole"
near t = 0 is graphically portrayed in the best curve
for p;2(v). The difference between the Hartree-Fock
and more exact P(r) is substantial and large enough to
lend confidence that a precise X-ray study could dis-
criminate between the two.

The fungtions illustrated in Fig. | and 2 were deter-
mined from the wave functions by numerical integra-
tion and were checked by calculating energies according
to eq. 15-17. Published energies were reproduced
almost exactly. Further observations on the properties
P(r) have been recently reported by Coulson and
Neilson,'® wlio outline an analytical method for de-
termining () from certain analytical forms of wave
functions.

E. Statistical, Hartree-Fock, and ‘‘Exact’’ Inelastic
Scattering Factors.—The inelastic scattering factor
S(s) for a spherical atom is defined by the relation

Liocle) = Ia[F(s) + S(s5)] (18)
A comparison of eq. 18 with eq. 4 and 11 indicates that

S(s) = N + fom P(t)(sin st),/st dr —
[fO”Dm(sin se)/srdr]? (19)

Plots of (Ziot/1a1). F2(s), and S(s) for helium are shown
in Fig. 3, as calculated for the Hartree-Fock and for the
more exact wave function of Roothaan and Weiss.
It can be seen that correlation effects on the inelastic

(13) C. A. Coulson and A. H. Neilson, Proc. Phys. Soc !london), 78,
831 (1961).

(14) €. C. J Roothaan, l.. M. Sachs, and A, W. Weiss, Reyr MWod Phys
32, 186 (1960).

(15) C. C.J. Roott~an and A, W, Weiss, ibid, 32, 194 {1960).

{16} L. Brillouin. “Actnalités scientifiques et indnstrielles.”” No 156,
Hermann et Cie., Paris. 1934; J. Goodisman and W. Kleniperer, J. Choin
Phys., 88,721 /1963); M. Karplus and H. J. Kolker, b7, 88, 1263 { 1u63;.
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Fig. 1.—Calculated electron-ituclear and electron-electrnn
radial distribution functions D(r) and P(T) for helium. The
enhanced electron avoidance implicit in the Roothaan-Weiss
wave function in comparison with the Hartree-Fock wave funec-
tion is clearly evident. The D(r) functions calculated from the
two wave functions are indistinguishable from each other in the
scale of the above plot.
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Fig. 2.—Calculated electron-nuclear and mean electron-
electron densities p(r) and pi(T) for helium. The wave fune-
tions used were Hartree—-Fock [¢(r1)e(r2)], Hylleraas [(1 + cTy2)
exp( —ar; — ar)], and Roothaan-Weiss [¢(r1)e(r:)x(T1r)] func-
tions with correlation energy errors of 1009, 30.0¢;, and 7.99,,
of tlie total correlation energy, respectively.

intensity are significant. Also plotted are the 1931
experimental values of Wollan," corrected for rela-
tivistic effects. These results are not sufficiently accu-
rate to establish P(r) with any precision but they are
not inconsistent with the present calculations.

Inelastic scattering factors as good as Hartree-Fock
factors have become generally available only recently . !®
For the most part Heisenberg-Bewilogua scattering
factors deduced from the Thomas-Fermi statistical
model have been used in the past.' The statistical
model may be expected to fail more seriously as the
number of electrons decreases, and accurate results
cannot be expected for helium. For purposes of com-
parison, numerical values of S(s) calculated for helium
are listed in Table I. Computations were based on the
statistical model and on Hartree-Fock,'* Hylleraas,?
and Roothaan-Weiss!® wave functions.

(17) K. O. Wollan, Phys. Rev., 8T, 862 (1931).

(18} A, J. Freeman, Acta Cryst., 12, 274 (1959); 18, 190 (1960); A,
J. Freeman and R. E. Watson, U. S. Dept. of Commerce, Office of Tech-
nical Services, A1) 263,096 (1961).

(19 1. Bewilogua, Physik Z., 82, 740 (1931).
120) E. A. Hylleraas, Z. Physik, b4, 347 (1929).

L. S. BarTELL AND R. M. GAVIN, Jr.

Vol. 86
I ! I | I
40 -
TrotaL / T oLassiclaL
\\ o WOLLAN (EXPT.)
20— N ————— —HARTREE - FOCK -
2 S ROOTHAAN-WE'SS
F S
S
20~ B -
//”’
///
(o~ 7 -
P
S
00 | | | | |
0 2 4 6 8 10
-t
s, (&Y

Fig. 3. —Reduced total, elastic [ F?], and inelastic [S] intensities
calculated for X-ray scattering by helium. Experimental points
due to Wollan are plotted as O's. The elastic intensities calcu-
lated froni the two wave functions are indistinguishable from
each other in the scale of the above plot.

TaBLE I
INELASTIC SCATTERING FAcCTORS, S(s), CALCULATED FOR HELIUM
Roothaan—
Heisenberg Hylleraas® Weissd
sin ¢/2 Bewilogua Hartree-Fock” (1 + cma)- e(rde(r)
A statistical® o(r1) elrs) exp( —ary — ary) X a)
0.025 0.49 0.02164 0.01812 0.02052
.050 .79 08474 07123 08032
075 99 11841 1557 1744
1100 1.15 3121 2659 2954
1125 1.27 4596 3953 4348
150 1.38 6176 5367 5840
175 1.46 7779 6835 7355
200 1.52 .9336 . 8297 . 8830
250 1.63 1.2138 1.1029 1.1485
300 1.70 1.4382 1.3336 1.3669
400 1.80 1.7275 1.6526 1.6621
500 1.86 1.8704 1.8241 1.8219
600 1.90 1.9376 1.9104 1.9052
.700 1.92 1.9692 1.9533 1.9485
.800 1.9842 1.9748 1.9712
e Ref. 19. ® Four term analytical s.c.f. orbital functious,
09 of correlation energy. ref. 14. ¢ 70.09, of correlation elergy,
ref. 20. ¢ 92.19] of correlation energy, ref. 15.

F. Physical Description of X-Ray Scattering Proc-
ess.—A consideration of physical aspects of the
scattering process gives some insight into the role of
electron correlation in diffraction. Reference books
on crystallography customarily describe X-ray diffrac-
tion in terms of the following picture:

(la) An X-ray wave encounters the time-average
electron cloud charge of the scatterer and sets it into
sympathetic motion.

(2a) Each volume element in the electron cloud radi-
ates a wavelet, the amplitude of which is proportional
to the charge density in the volume element.

(3a) At the point of observation the amplitudes ar-
riving from each wavelet are summed, giving the re-
sultant scattered amplitude at that point.

(4a) The intensity is obtained by squaring the abso-
lute magnitude of the scattered amplitude.

In summary. scattered amplitudes are averaged over
the quantum density of the electrons and the result is
squared to get intensities. No manifestation of electron
correlation is evident.

By contrast, the original treatment of Debye® and
the treatment of Waller and Hartree, according to eq.
1, imply that:
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(1b) The X-ray wave encounters an instantaneous
distribution of point electrons.

(2b) Scattered amplitudes from the individual point
electrons are summed at the point of observation to
give an instantaneous total scattered amplitude.

(3b) The instantaneous amplitude is squared to ob-
tain the intensity due to the instantaneous array of
point electrous.

(4b) Instantaneous intensities are averaged over the
quantum mechanical distribution of geometrical con-
figurations to get the mean total intensity.

In suinmary, scattered intensities are averaged in
viewpoint b rather than emplitudes as in a. Electron
correlation is manifested in the weighting of instan-
taneous configurations.

Viewpoint b might be interpreted, physically, in
terms of the high frequency of X-rays in comparison
with natural atomic and molecular frequencies. That
is, the time for X-ray scattering is envisioned to be
short compared with the time for planetary electrons
to move appreciably. This classically expressed inter-
pretation is closely analogous to the popular interpre-
tation of the Franck-Condon principle. It is a useful
interpretation but suffers the same deficiency as the
Franck-Condon interpretation. If the spectrum of
intensity from a system of independent molecules were
examined under high resolution, sharp fine structure
would be found, as discussed below. In view of the
uncertainty relation Ay-Af ~ 1, the existence of fine
structure with an energy breadth narrower than spacings
between molecular excitation levels would indicate
that the duration of the scattering process [or Franck-
Condon excitation] is Jong compared with natural
molecular periods.

There is really no contradiction between viewpoints
a and b, for a corresponds to the elastic intensity and
b to the total intensity. This is illustrated in the follow-
ing. The density p;(r) of electron ¢ is given by the
integration of ¢*¢ over all coordinates except those of
electron 7. Hence, eq. 2 reduces at once to

Lotast = [cl\f Z p(r) exp(is-r) dr‘2
= LS p(r) exp(ist) drl? (20)

This equation expresses viewpoint a.

On the other hand, Waller and Hartree have shown
that the inelastic intensity scattered in the excitation
of atoms from state % to state / is

Ly = LS [2 explist) g, dr]2 (21)

The total intensity scattered by a system of atoms
initially in the kth state is then

[tot(sﬂ) = ;[H’ (22)

Since it is presumed that the set of eigenfunctions
{¥.} is complete, eq. 22 simplifies by application of the
closure theorem to eq. 1. This equation expresses
viewpoint b.

The momentum exchange between photons and
atoms incurred in elastic scattering involves the entire
mass of the atoms. The momentum exchange in the
inelastic (Compton) scattering involves the planetary
electrons, which are thereby excited to higher states.

The momentum exchange between photons and elec- .

trons, as it were, is associated with positional measure-
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ment of the electrons. It is natural, therefore, that
correlation shows up in inelastic rather than elastic
scattering. Inasmuch as atoms do not have infinite
mass, '‘elastic’’ scattering is also, of course, to some
degree inelastic.

An analogous situation in neutron diffraction has
been exploited for some time. Inelastic neutron
scattering experiments have been used exteusively in
the study of correlated motions of nuclei in crystals.?!
Neutron scattering is particularly effective for this
because neutrons have masses comparable to nuclear
masses and readily exchange momentum with nuclei.
By the same token, it is apparent that inelastic electron
scattering would closely parallel inelastic X-ray
scattering and serve best as a tool for studying motions
of planetary electrons.

II. X-Ray Diffraction by Crystals

For light atoms lens: and Iy, are very different and
the inelastic contribution is sensitive to electron cor-
relation behavior. It is not immediately obvious,
then, that X-ray diffraction by crystals with light atoms
is adequately described by the conventional elastic
scattering picture alone. It is usually argued that
inelastic scattering is incoherent and, hence, unim-
portant in scattering by crystal lattices. Nevertheless,
eq. 21 indicates definite phase relationships for wavelets
scattered from volume elements over the entire crystal
by each inelastic event. Considerations of this sort
originally made it appear worth investigating whether
electron correlation might be responsible for anomalous
results encountered in crystallography such as the un-
reasonably short lengths often reported for bonds to
hydrogen atoms.??

THe basic relations 1 and 2 of section I-A apply to
crystals as well as to individual atoms if the appro-
priate many-electron wave function for the entire
crystal is used. The elastic intensity is sensitive only
to electron density, as we have seen. If a simple
atomic orbital product wave function is used it may be
shown that the only difference between /i, and g
is a featureless (incoherent) sum of inelastic atomic
terms. Any departure between a featureless inelastic
intensity and an intensity calculated from a precise
wave function must result from the influence of electron
correlation on the pair distribution function ®(r,;) of
eq. 7.

It is reasonable to assume that correlation effects are
significant only for nearest molecular neighbors.
Intramolecular dispersion interactions may be high
but intermolecular dispersion forces scarcely extend
beyond nearest neighbors. It follows that the number
of terms in eq. 7 which are influenced by correlation is
proportional to the number of molecules in the crystal.
The total number of terms, however, is proportional to
the square of the number of molecules. Since all terms
in the summation of eq. 7 are comparable in magnitude
at reflection maxima it would seem that effects of elec-

(21) B. N. Brockhouse and A, T. Stewart, Rev. Mod. Phys., 30, 238, 250
(1958); Symposium on lnelastic Scattering of Neutrons by Solids and
Liquids,”” International Atomic Energy Agency, Vienna, 1961,

(22) J. P, Wheatley, Acta Cryst., 6, 369 (1953); J. A. lbers, ibid., 14,
853 (1961); W. C. Hamilton, Ann. Rev. Phys. Chem., 13, 19 (1962), Iber's
model to explain the fact that C—H distances in electron diffraction studies
are longer than in spectroscopic studies is almost certainly wrong, however,
because electron diffraction and spectroscopic values agree when spectro-
scopic values are corrected to mean values. See L. S. Bartell, K. Kuchitsu,
and R. J. de Neui, J. Chem, Phys., 85, 1211 (1961).
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Fig. 4.—Total and elastic inteusities calculated for electron
scirttering hy lielium.  Inteusities are nultiplied by s23, simulat-
ing the action of a rotating sector, to portray most clearly the
distitictinns between the different curves.

tron correlation are insignificant in crystals with large
nuimbers of well-ordered atoms. Therefore (and to no
crystallographer's surprise), the conventional equations
of crystallography are accurate and the source of diffi-
culties with hydrogen must lie elsewhere.

111, Electron Diffraction by Gas Atoms and
Molecules

The assumptions which must be imposed before
electron diffraction is amenable to simple treatment are
somewhat more severe than those for X-ray diffraction,
as might be expected from the stronger interaction
of electrons with matter. As in the case of X-rays, the
model considered here is nonrelativistic with the inci-
dent energy large compared with atomic excitation
energies. If polarization and exchange are ignored
and the first Born approximation is applied, expressions
for the intensity exactly paralleling eq. 1 and 2 for X-
rays result.?® The wave functions involved, however,
include uuclear coordinates as well as electronic co-
ordinates. An interesting consequence is that elastic
and total intensities can be reexpressed in terms of
viewpoints a and b of section I-F.  The only adjust-
ments which must be made are that nuclei as well as
planetary electrons scatter wavelets, but with ampli-
tudes —Z times as great, and that /. for electrons is
given by the Rutherford scattering law?* rather than
the Thomson equation. This formulation is useful
because of its simplicity and power. It is appreciably
more precise than the commonly used Debye-Ehrenfest
independent atom approximation and has the added
virtue of being exceedingly easy to remember.

For a gas molecule the average over random orienta-
tions is exactly analogous to eq. 8, or

Liole) = T 2.0 Z,ZfP,, (r)(sinsr)/srdr (23)
PR

where the sum is over all particles, nuclei and electrons
alike, with Z, standing for atomic number if u is a nu-
cleus and standing for —1 if u is an electron. For a
cas atom, eq. 23 reduces to nuclear-nuclear, nuclear-
electron. and electron-electron terms, or

{231 For the key steps, see T. Iijim», R. A. Bonham, and T. Ando, J.
Phye Chem,, 87, 1472 (2963).

i2is I5. Rntherford, Pail. Mag., 21, 669 (1911)

L. S. BarTELL aND R. M. Gavin, Jr.

Vol. 86
Tot(e) = Ta} 22 — ZZZ SID(r)(sin s7)/sr dr +

2 SRy (sin stost dr] (24)
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in which 7 and j denote electrons. The middle terin is
seen at ouce fromn eq. 4 to be —2ZF(s) and the last
term is identical with the X-ray double summation in eq.
8 which reduces to Fi(s) + S(s) according to eq. 18,
so that

Lolo) = 101{22 — 2ZF(s) + [F¥s) + S(q)”
Ia}{1Z = FOG)P + S6)} (25)

i

Equation 25 is the conventional electron diffraction
expression for atoms. The corresponding elastic inten-
sity 1s

y:n‘,(t.’)) = [QI[Z — F(Y)]“Z CLG)

Elastic and total intensities for helium calculated
using eq. 25 and 26 are shown in Fig. 4 as they would be
recorded through an s*° rotating sector. Electron
correlation effects are found to be relatively greater
in electron diffraction than in X-ray diffraction since
S/(Z — F)?is greater than S//? in the critical range of
scattering angle. Partly offsetting this advantage of
electron diffraction over X-ray diffraction as an experi-
mental measure of correlation effects is the greater
uncertainty of electron diffraction theory as discussed
above.?

It is apparent that /.. for electrons cannot be
analyzed to yield either D(7) or P(t) directly. This is
in contrast to the X-ray case where £(t) is derivable from
Tt alone. If both [+ and .. are available from
electron diffraction, however, both D(r) and P(r) may
be derived. An experimental electron diffraction
determination of D(r) for argon by Bartell and Brock-
way,!! which made use of ouly [l is subject to the
same criticism as the X-ray determinations discussed
in section I-B above.

Further applicatious of this general approach in
electron diffraction, such as the influence of covalent
binding effects on scattered intensities, have been
discussed recently by Bonham, et al.**% Additional
aspects of electron correlation in various states of helium
and other light atoms will be published elsewhere
along with the details of treatment omitted here.
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(25) It isinteresting to note, however, that the expression for the inelastic
scattertng of electrons is probably not sensitive to errors in the Born approxi-
mation., We are indebted to Professor 1debye for pointing this out. The
Born approximation gives the correct expression for the intensity scattered
by an isolated charged particle even though it gives incorrect phases of the
scattered waves. It also gives essentially correct interference terms for the
scattering by a system of particles of identical charge. It givesincorrectin-
terference terms for a pair of particles of significantly different charge. It
would seem, then, that the electron-electron terms of eq. 23, which inclnde
the inelastic scattering, are reasonably accurate. The electron: nuclear
terms are less reliable but, since they contribute only to the ejastic scattering,
their unicertainty is less serious in correlation studies. If Born ercors dre not
corrected it is not possible to derive aconrate one-elvction densities directly
from electron scattering data. On the other hand, it may be possible to«de-
rive reasonably acourate fwo-electron distribution functions front uncorrected
inelastic scattering data with (he aid of theoretical one-electron atam form
factors.

(26) R. A. Bonham and T, lijima, J. Phys. Chem., 67, 2266 (1963)



